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Two lectures

@ Krylov methods for eigenvalue problems: theory and algorithms
» Concepts of spectral approximation
» Convergence/approximation theory
» Algorithms

© Krylov methods for eigenvalue problems: applications

» Computing eigenvalues with largest real part (stability analysis)
» Nonlinear eigenvalue problems
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Outline of lecture 1

0 What is an eigenvalue problem?
9 Power method and friends

e Stopping criteria

o Matrix transformations

e Rational Krylov sequences

e Generalized eigenvalue problems

0 Other methods
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Eigenvalue problems

An eigenvalue problem is every mathematical problem that can be
translated to

What is an eigenvalue problem

For matrix A € C"™", find a particular A € C and x € C", x # 0 such that

Ax = \x
or find a particular A € C and x,y € C", x,y # 0 such that

AX = M

We call (A, x) and eigenpair of A. (Later more on properties of
eigenvalue problems)
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Power method

Initial vector x(©) with ||x(®)||, = 1
fork =1,2,...do
Yy Z A xk—1)

x&) = y®) /]y @,
end for

Theorem (Convergence)
Let the n eigenvalues A4, ..., Ap of A be ordered as follows:

[MI>[A2] = -+ > [An]

(\1 is the dominant eigenvalue; \¢ is simple.)
x%) converges to the dominant eigenvector.

Theorem (Convergence speed)
The convergence rate of the dominant eigenvalue is |\z|/|\1].
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Olmstead benchmark problem

ou d?v d%u 3
o~ (1-Ogxa +Cgxz TAU-U
ov

Bor = u-v

u represents the speed of the fluid

v is related to viscoelastic forces.

The boundary conditions are u(0) = u(1) = 0 and v(0) = v(1) = 0.
Discretization with central differences

A is the Jacobian at the steady state for B =2, C = 0.1 and R = 4.5.
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Shifted power method

Power on A — ol.

Convergence to dominant eigenvalue of A — o/ with rate of
convergence [\ — o|/|\2 — o|.

Implementation:

(A — al)xth=1) Z Ax(=1) _ qxlk=)

Example (Olmstead):

@ Shift o = —2000.0

@ Convergence rate: 0.99857
(slow!)

I I I I I
—4,000 —3,000 —2,000 —1,000 0
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Two friends

@ Subspace iteration
@ Arnoldi method (Krylov)
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Subspace iteration
Is the power method on a subspace, or a block of vectors:

Initial vectors V(© = [v{? . v®] € cmm with ||V, = 1
fork=1,2,...do

wk = A. yk-1)

Orthonormalize the columns of W) — (k)
end for

Theorem (Convergence)
Let the n eigenvalues A4, ..., Ap of A be ordered as follows:

Atl = - 2 Pnl> ] = - = Al

(M, ..., A\m are the m dominant eigenvalues.)
Range(V %)) converges to the dominant invariant subspace.

Theorem (Convergence speed)
The rate of convergence is |\ 1|/| |-

v
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Subspace iteration

Extracting eigenvalues by Galerkin projection
@ x = Vz withz e C™.

@ Galerkin:
Ax — Xx L Range(V)
becomes:
V¥(Ax —Xx) = =0
V¥(AVz - AVz) = 0

(VFAV)z = Az

(VFAV)z = Az
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Subspace iteration

Gram-Schmidt orthogonalization
@ Itis very (very) important that the columns of V are orthogonal
@ Modified Gram-Schmidt is numerically unstable, i.e., columns of V
are not orthogonal to machine precision

@ lterative Gram-Schmidt is the solution
Gram-Schmidt for orthogonalization of vector w against columns

of V:
w=w-—V((V*w)
v =w/[|w|
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Subspace iteration

Gram-Schmidt orthogonalization
@ ltis very (very) important that the columns of V are orthogonal
@ Modified Gram-Schmidt is numerically unstable, i.e., columns of V
are not orthogonal to machine precision
@ lterative Gram-Schmidt is the solution
Iterative Gram-Schmidt for orthogonalization of vector w against
columns of V:
w=w-V((V*w)
w=w-—V(V*'Ww)
v=w/|wl
lterative Gram-Schmidt is backward stable: [V, v] has orthonormal
columns and w is spanned by the columns of [V, v].
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Subspace iteration

Example (Olmstead)
@ Subspace iteration for
A +2000/.

@ Convergence rate for the
power method: 0.99857

4l ] (slow!)
6l . @ For subspace iteration with
4000 3000 2000 1000 0 m = 10: 0.96587 (still slow)
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Subspace (polynomial) iteration

Convergence of subspace iteration can be controlled by using shifts:
(matrix iteration k)

Range(V(*)) = Range((A — o/)fV(®)

A better choice (often) is to choose a filter polynomial that removes the
unwanted eigenvalues

Initial vectors V(© = [v{? . v{®] € cmm with ||[VO), = 1
fork=1,2,... kdo

W®) = (A — o) - VET)

Orthonormalize the columns of W) — (k).
end for
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Chebyshev iteration

Chebyshev iteration'

Initial vectors V(© = [v{? . v®] € cm with ||[VO), = 1
w1 —o
WO _ 0

forj=1,2,... kdo
wo =2awi-1 — wi-2)
end for
Orthonormalize the columns of W®*) — (k)

8

e e S I 6
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Chebyshev iteration

Theorem (Convergence)
Let the n eigenvalues \q, ..., Ap of A be ordered as follows:

[Tk )l = - = [ TkAm) [>Tk Amga)l = - = [ Tk(An)

(A1, ..., Am are the m dominant eigenvalues of Ty (A).
Range(V%)) converges to the m eigenvalues of A outside [-1,1].
The rate of convergence is |T(\1) 1.

For complex eigenvalues:

For computing eigenvalues outside /_\
[, B], shift and scale the T/

Chebyshev polynomial: T
A2y
v
2
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Inverse iteration

Subspace iteration applied to (A— 0/)_

Initial vectors V(© [v vm ] e CM™m with [|[VO)]|, =1
fork=1,2,... kdo

Solve (A — ol)W®) = k-1

Orthonormalize the columns of W) — (),
end for

Theorem (Convergence)
Let the n eigenvalues \q, ..., Ap of A be ordered as follows:
IM—o| <> dm—0o|<|App1 —0| > > | A—n—o0]

M, ..., Am are the m eigenvalues of A nearest o.
Range (V) converges to the m eigenvalues of A o nearest o.
The rate of convergence is |\ — o|/|Ami1 — 0|
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Inverse iteration

Example: Olmstead problem

6

Eigenvalues of A and shift o

I I I
—4,000 —3,000 —2,000 —1,000
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Arnoldi method

Build a Krylov space (from a power sequence):

{V1 7AV27AzV1 . .Ak71 V1}

Arnoldi algorithm produces orthonormal basis Vy = [vy, ...

Given vy with ||v4]]2 =1
forj=1,... ,kdo

w;=A-v

Block Gram-Schmidt
hiJ:Vi*VllijFi: 1,...,]
fi = wj — X vihi
hiv1; = lIfill2
Vitr =fi/hjs

end block

end for

Eliminate w; and f;:

J j+1
AVj :Zv;hu—kfj = ZV/hu
i=1 i=1
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Arnoldi method

Recurrence relations

J j+1
AVj = ZV/h,‘J +fi= ZV//’)U

Define
his hig - hyg
Hy — hay - c Ckxk
0 :
0 Py k-1 bk

Arnoldi factorization:
AV — VkHy = fel

From ViV, =l and V/f, = 0, we find: Hyx = VAV
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Arnoldi method

Computation of Ritz values using Galerkin projection x = Vj.z:

Ax — X L Range(Vy)
VE(AVkz = A\Vz) = 0
(VEAVy)z AVEVi)z
Hiz = z
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Arnoldi method
Convergence:
@ Convergence rate for (A, X;):

t f
(Vi yi) e o min et POV

Example (Olmstead) —k = 10

@ Krylov space is a space of
polynomials. Fast
convergence when there is a
polynomial p, so that p(A)v;
makes small angle with an
eigenvector associated with );.

@ The Krylov spaces for A and

@ In words: well-separated A — ol are the same. Shifting
extreme eigenvalues converge does not change convergence.
first.
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Arnoldi method
Convergence:
@ Convergence rate for (A, X;):

tan(vy, Yy
(Vi yi) e o min et POV

Example (Olmstead) — k = 11

@ Krylov space is a space of
polynomials. Fast
convergence when there is a
polynomial p, so that p(A)v;
makes small angle with an
eigenvector associated with );.

@ The Krylov spaces for A and

@een sxXe sXx e s ex eX e o s @

@ In words: well-separated A — ol are the same. Shifting
extreme eigenvalues converge does not change convergence.
first.
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Arnoldi method
Convergence:
@ Convergence rate for (A, X;):

tan(vy, Yy
(Vi yi) e o min et POV

Example (Olmstead) — k = 12

@ Krylov space is a space of
polynomials. Fast
convergence when there is a
polynomial p, so that p(A)v;
makes small angle with an
eigenvector associated with );.

@ The Krylov spaces for A and

@® e % sXxeXe o s o s o N X @x

@ In words: well-separated A — ol are the same. Shifting
extreme eigenvalues converge does not change convergence.
first.
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Arnoldi method
Convergence:
@ Convergence rate for (A, X;):

t f
(Vi yi) e pmin et POV

Example (Olmstead) —k = 13

@ Krylov space is a space of
polynomials. Fast
convergence when there is a
polynomial p, so that p(A)v;
makes small angle with an
eigenvector associated with );.

@ The Krylov spaces for A and

@ In words: well-separated A — ol are the same. Shifting
extreme eigenvalues converge does not change convergence.
first.
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Arnoldi method
Convergence:
@ Convergence rate for (A, X;):

tan(vy,y;
(Vi yi) e pmin et POV

Example (Olmstead) —k = 14

@ Krylov space is a space of
polynomials. Fast
convergence when there is a
polynomial p, so that p(A)v;
makes small angle with an
eigenvector associated with );.

@ The Krylov spaces for A and

@ In words: well-separated A — ol are the same. Shifting
extreme eigenvalues converge does not change convergence.
first.
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Arnoldi method
Convergence:
@ Convergence rate for (A, X;):

t f
(Vi yi) e pmin et POV

Example (Olmstead) —k = 15

@ Krylov space is a space of
polynomials. Fast
convergence when there is a
polynomial p, so that p(A)v;
makes small angle with an
eigenvector associated with );.

@ The Krylov spaces for A and

@ In words: well-separated A — ol are the same. Shifting
extreme eigenvalues converge does not change convergence.
first.
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Arnoldi method
Convergence:
@ Convergence rate for (A, X;):

t f
(Vi yi) e pmin et POV

Example (Olmstead) —k = 16

@ Krylov space is a space of
polynomials. Fast
convergence when there is a
polynomial p, so that p(A)v;
makes small angle with an
eigenvector associated with );.

@ The Krylov spaces for A and

@ In words: well-separated A — ol are the same. Shifting
extreme eigenvalues converge does not change convergence.
first.
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Arnoldi method
Convergence:
@ Convergence rate for (A, X;):

tan(vy,y;
(Vi yi) e pmin et POV

Example (Olmstead) —k = 17

@ Krylov space is a space of
polynomials. Fast
convergence when there is a
polynomial p, so that p(A)v;
makes small angle with an
eigenvector associated with );.

@ The Krylov spaces for A and

@ In words: well-separated A — ol are the same. Shifting
extreme eigenvalues converge does not change convergence.
first.
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Arnoldi method
Convergence:
@ Convergence rate for (A, X;):

t f
(Vi yi) e o min et POV

Example (Olmstead) —k = 18

@ Krylov space is a space of
polynomials. Fast
convergence when there is a

] polynomial p, so that p(A)v;

. makes small angle with an

’ eigenvector associated with );.

@ The Krylov spaces for A and

@ In words: well-separated A — ol are the same. Shifting
extreme eigenvalues converge does not change convergence.
first.
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Arnoldi method
Convergence:
@ Convergence rate for (A, X;):

t f
(Vi yi): pmin et POV

Example (Olmstead) — k = 19

@ Krylov space is a space of
polynomials. Fast
convergence when there is a
polynomial p, so that p(A)v;
makes small angle with an
eigenvector associated with );.

@ The Krylov spaces for A and

@ In words: well-separated A — ol are the same. Shifting
extreme eigenvalues converge does not change convergence.
first.
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Arnoldi method
Convergence:
@ Convergence rate for (A, X;):

tan(vy,y;
(Vi yi): pmin et POV

Example (Olmstead) — k = 20

@ Krylov space is a space of
polynomials. Fast
convergence when there is a
polynomial p, so that p(A)v;
makes small angle with an
eigenvector associated with );.

@ The Krylov spaces for A and

M e K W e XeX s e eXexXe o @x

@ In words: well-separated A — ol are the same. Shifting
extreme eigenvalues converge does not change convergence.
first.
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Stopping criteria

@ Residual: Given A e Cand X € C”, ||X]]p = 1
r=Ax — X
@ Backward error: (), X) is an eigenpair of

rx*

X*X

@ In Arnoldi:

AX — Ak = AViz — \Viz
= ViHz — Az + v 1 5kef z
= felz
IA% = AX|| = hyirklefz|
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Matrix transformations

@ The Arnoldi method is faster than subspace iteration (usually), but
often still converges very slowly, in particular for large scale
problems arising from PDEs for similar reasons as iterative
methods for linear systems of equations.

@ The main problem:

» Memory cost: nk
» Gram-Schmidt computational cost: nk?

@ Solutions:

» Matrix transformation
» Restart (as in restarted GMRES)
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Chebyshev transformation

@ As for subspace iteration, compute the eigenvalues of T, (A)

instead of A.
@ Eigenvalues of Ty (A) are better separated, so, convergence is
faster.
e :
4 0.2} b
21 e
0 of {/ \I\ 8
2t N
—4r < —0.2 . 1
- | | | ‘ | | | |
—4,000 —3,000 —2,000 —1,000 0 0 2 4 6
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Shift-and-invert transformation

6 N 6l |
4 - B 4 B
2 1 2 J
s 1 ol — “ |
—2f 1 ol ]
-4 . a4l R B
-6 ‘ ‘ ‘ ‘ ‘ B —6 ‘ ‘ ‘ " ‘ “ ‘ ]
4,000 —3,000 —2,000 —1,000 0 12 10 -8 -6 -4 -2 0 2
T=(A-ol)" 02| o 1
o
0F = [ |
@ The most important NS
transformation o2l ) i
@ Based on inverse iteration S

-03 -02 -01 O 01 02 03
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Shift-and-invert transformation

Convergence of the Shift-and-Invert Arnoldi method:

@ Some say: convergence to the eigenvalues nearest o: this is true
for subspace iteration but not for Arnoldi.

@ There is also convergence to well separated eigenvalues further
away from o.

@ The eigenvalues nearest o converge well, but other eigenvalues
may also converge.

@ Shift-and-invert is used in all kinds of situations, but keep this is in
mind.

Implementation:
@ One sparse LU factorization
@ k backward solves
@ This is what makes this method so popular
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Implicit restarting

@ Explicit restart
» Improving one Ritz vector:

{X1 JAXq, . ,Ak71X1 }
» Improving two Ritz vectors:
{(@1x1 + azx2), A(a1Xsa2X2), ..., AA (a1 xy aoXz) }

How do we choose a4 and as?
» Polynomial filter:

{9p(AVW1, Adp(Avs. ..., A Gp(A)v: }

How do we choose the polynomial ¢p?
@ Implicit restart
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Implicit restart

@ [Morgan, 1996] showed that the best linear combination is
Vi =pix1+- ppXp

with p; the residual norms.
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Implicit restart

@ [Morgan, 1996] showed that the best linear combination is
Vi =pix1+- ppXp

with p; the residual norms.
@ He proves that this is the same starting vector as

vi=dp(Avi L dp(N) = (A—Ar) (A Ap)
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Implicit restart
@ [Morgan, 1996] showed that the best linear combination is
Vi =pix1+- ppXp

with p; the residual norms.
@ He proves that this is the same starting vector as

Vi = dp(AW . dp(N) = (A= Ay (A= Ap)

@ [Sorensen 1992] showed that this is done by implicit restarting:

@ QR factorization of QR = ¢p(Hk)
@ Keep the first p columns of Q
© Compute V7 = VkQ and H = Q*HQ
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Implicit restart

@ [Morgan, 1996] showed that the best linear combination is
Vi =pix1+- ppXp

with p; the residual norms.
@ He proves that this is the same starting vector as

Vi = dp(AW . dp(N) = (A= Ay (A= Ap)

@ [Sorensen 1992] showed that this is done by implicit restarting:

@ QR factorization of QR = ¢p(Hk)
@ Keep the first p columns of Q
© Compute V7 = VkQ and H = Q*HQ

@ [M. & Spence 1997] and [Lehoucq, 1999] show that
Range(V,") = Range(¢p(A)Vp)

(= polynomial subspace iteration)
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Implicit restart
Before ‘implicit restart’:
@ Subspace dimension is k
@ Ritz vectors x1, ..., xp.
After ‘implicit restart’:
@ Subspace dimension is reduced from k to p.
@ Ritz vectors x4, ..., Xxp.
@ Recurrence relation: AV — VT Hy =ffe]
k — p additional Krylov steps:
@ Subspace dimension increased from p to k.
@ Recurrence relation: AV,” — V.t H =ffe]
@ Is the same subspace as

K—
span{xi,...,Xp, Ax, ..., AXP}

with x any from {x1,...,xp}.
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Implicit restart

: k Arnoldi steps with starting vector v4: Vi, Hy
while Desired Ritz pairs have not converged do

Compute Ritz pairs and select ¢, _p.

QR on Hj with shifts: Hy', Vj .

k — p Arnoldi steps to expand V" to V,'.
end while

o a kb2

@ Convergence is similar to polynomial subspace iteration, but with
cheaper iterations [Lehoucq, 1998]

@ Convergence of full Arnoldi and restarted Arnoldi for selected
eigenvalues is very much alike [Morgan 1995]

@ In practice use the QR method’s bulge chasing instead of Arnoldi
on H,.

@ More numerically stable, but mathematically equivalent: Krylov
Schur [Stewart 2001] (was known by Lehoucq in 1995).
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Implicit restart

Polynomial filters ¢x_p(X) = (A = 01) - - - (A — 0k_p):

@ Exact shifts: shifts are Ritz

values (Sorensen & Morgan)

@ Chebyshev shifts: select the S
parameters of the Chebyshev

polynomial from the Ritz O] mxox oo o axao oo nm |

values and filter out the ellipse
with unwanted eigenvalues

@ Leja shifts (potential theory)

[Calvetti, Reichel, Sorensen, _1‘50 1
1994]

@ Zero shifts (see further)
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Implicit restart

Matrix is tridiagonal:
@ Main diagonal: 1,...,1000
@ Superdiagonal: —0.1
@ Subdiagonal: 0.1

Arnoldi:
@k=24,p=6
@ 10 sweeps of implicit R
restarts are compared £ .
to full Arnoldi with
24 +9-18 =186
iterations

[Morgan, 1996]
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Newton method

@ Apply Newton (Raphson) to:

Ax—Xx = 0
xX*x = 1
for (A, x)
0 MK+ — X\(K) - AN, x(K+T = x(K) 1 Ax:

AR —x0] (Ax Ax(6) — \(K)x (k)
2(xWy 0 } (M) __< Iz — 1 )

@ Explicitly normalize x(*) and on every iteration:

xEED = —ANA — AR )T x(R)
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Rational Krylov sequences
A generalization of the shift-and-invert Arnoldi method:

1: Given vy with ||vq|]2 = 1.

2. forj=1,... kdo

3 Solve (A — gjl)w; = v;

4 Block Gram-Schmidt

5: hij =viwifori=1,...,j
6 fi = wj; — 3y vihi

7 hiy1j = lIfil2

8 Vitr = fi/hji1

9: end block
10: end for

Eliminate w; and f;:

J+1

(A —ojl) ZV/ IJ+f_ZVI i
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Rational Krylov sequences
Recurrence relations

j+1

(A _‘7/ ZVI l,/‘|‘f—ZV/ i j

Rational Krylov factorization:
AViHy — ViKi = (A — oxl)fkel

with
Ky =l + HeXe with ¥, = diag(a1 e ,Uk)
Ritz values by Galerkin projection of (A — ox/)~! on Range(Vx):

KkZ = )\HkZ , X = VkaZ
Residual
Ax — \x = (A — ok (€] 2)
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Rational Krylov sequences

Example 1: rational Krylov as a Newton method for finding eigenvalue
with largest real part:

1: Given vq with |[v[p =1. 10 i
2: Given oy =0. ..
3 forj=1,... kdo 50 . i
4: Solve (A — oj)w; = v; 12 14
5. Gram-Schmidt of w; T 13
6: Compute Ritz values .
7 Select 0j, 1 as the
Ritz value with largest
real part.

8: end for ‘ ‘ ‘ ‘ ‘ ‘
-10 -5 0 5 10 15

Be careful: Newton steps may introduce large errors in the recurrence
relation.

i
|

10| i
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Rational Krylov sequences

Implementation issues:

@ Linear systems have to be solved accurately
AV Hy — BVkKy = (A — o l)fkel + Ry

with [kl ~ [|(A — o)w; — vjl|2-
@ Linear solver is usually a direct method.

@ Matrix factorization is often most expensive operation: reuse shifts
O'j.
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Rational Krylov sequences

Slicing for symmetric eigenvalue problem (structural
dynamics/acoustics)
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Rational Krylov: Implicit restarting
@ Restart with filtered starting vector/subspace:

Vi = dkp(A)vy with ¢x_p(2)

_Z_//(/1---

Z— Pk—p

oz 01
Range(V,) = Range(¢x_p(A)Vp)
@ QZ step on Hy, Kj:

Hi = QHZ
Ki = QKZ
Vi = vaQ

@ Recurrence relation:
AVSHS — VK = (A—owl)fe)

The first p poles are ox_pi1, ..., 0.
@ Implementation:

» Naive [De Samblanx, M. & Bultheel, 1997] (including Krylov-Schur)
» Bulge chasing (QZ method) [Camps, M. & Vandebril, 2017]
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Rational Krylov: Implicit restart with zero shift

@ Shift-and-invert transform has
a cluster of eigenvalues near
zero.

@ This sometimes leads to
spurious eigenvalues.

@ The use harmonic Ritz values
may help [Morgan, 1991]
[Paige, Parlett, van der Vorst,
1995].

@ Another way is to filter away
the eigenvalues near zero [M.
& Spence 1997]:

Withou; filteq

10

5

-10

12 14
. ° om i )]
13
| | | | | |
10 -5 0 5 10 15

Range(V,” ) = Range((A — ok!) ™" Vk_1)
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Rational Krylov: Implicit restart with zero shift

@ Shift-and-invert transform has
a cluster of eigenvalues near
zero.

@ This sometimes leads to
spurious eigenvalues.

@ The use harmonic Ritz values
may help [Morgan, 1991]
[Paige, Parlett, van der Vorst,
1995].

@ Another way is to filter away
the eigenvalues near zero [M.
& Spence 1997]:

With‘filte‘r

6 |- |
4 |- |
21 & -
oF ¢ o coms ] 13
_o | ®mn |
4| |
-6 | |

| | | | | | | |

12 10 -8 -6 -4 -2 0 2

Range(V,” ) = Range((A — ok!) ™" Vk_1)
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Generalized eigenvalue problems
Given matrices A, B € C"<";

Ax = \Bx

Regular eigenvalue problem: A and B do not have a common
nullspace, i.e., there are «, 5 so that aA + 8B is non-singular.

Shift-and-invert operator:

Ax = MBx
(A—oB)x (A —o0)Bx
(A—0)"'x = (A—0oB) 'Bx

Apply Arnoldi on (A — ¢B)~"B or use rational Krylov.
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Generalized eigenvalue problems

Symmetric positive definite A and B.
[Grimes, Lewis, Simon, 1994]

@ Choose shifts o; in between clusters of eigenvalues

@ (A - oB)~'Bis nonsymmetric:
» Use B inner product: V;BVj = 1.
» (A —oB)~'Bis self adjoint with the B-inner product:

v*B((A—0oB)"'Bx) = ((A—oB) 'By)Bx
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Generalized eigenvalue problems

Let B be singular and A — ¢B be nonsingular for some o, then
@ for all x : Bx = 0, we have (A —0B)~™'Bx =0
© which corresponds to Ax = coBx.

Such problems arise from DAEs (differential algebraic equations).

The infinite eigenvalue is usually undesired, but it may hinder create

spurious eigenvalues.

Tilted plane benchmark from rational Krylov [De Samblanx, M. &
Bultheel, 1997]:

lteration Without filter  With filter

3 8.432 —8.4677
6 19.751 —9.4833
9 74.83 —9.48831

Implicit filtering: multiply the Krylov space with (A — ¢B)~'B
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Other methods

@ For both right and left eigenvectors:
One Krylov space with A for right eigenvectors
One Krylov space with A* for left eigenvectors
Lanczos method, two-sided Arnoldi method
Higher risk for spurious eigenvalues — stabilize by an implicit
restart with zero shift
@ Linear systems with iterative solvers:
» Jacobi-Davidson [Sleijpen & van der Vorst]
» LOBPCG [Knyazev]
» Tuned preconditioner [Spence & Freitag]

@ Contour integral methods

v

v vy
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Block Arnoldi method

Arnoldi’'s method applied to a block of b vectors V; € C"*P with b > 1:

{Vy,AVy, A2V, ATV )

Arnoldi algorithm produces orthonormal basis Vi = [V4, ..., V]:

Given Vy with [|Vq]]2 =1
forj=1,... kdo
W =AY,
Block Gram-Schmidt
fori=1,...,bdo

Vier =]
Orthogonalize w;; = Wje; against [Vy,..., V; 4]
Vier = [Vier i/ w2l
end for
end block

end for

This is like subspace iteration, where the iterations are accumulated in

a subspace.
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Two-sided Krylov methods
For computing eigenvalues, right and left eigenvectors:

Ax = \Bx y*A=\y*B

Two Krylov spaces
@ (A-0B) 'B= V= x
@ (A*— 0B ) "B = W=y
Compute Ritz triples from reduced problem:

W*AVz = A\W*BVz

@ Lanczos method: use B bi-othogonalization: W*BV = /. [Bai & Ye
2001]

@ Two-sided Arnoldi method: compute projection explicitly [Ruhe ...]
@ Implicit restarting [De Samblanx & Bultheel, 1998] for Lanczos,
[Hochstenbach & Zwaan, 2017] for Arnoldi
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Statistical approaches
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Jacobi-Davidson method

@ Shift-and-invert with iterative solver

@ In order to avoid the need for ‘exact’ solves, JD solves the
correction equation iteratively:

(I =yx* /(YA = M) =xx7/(x7))z = =(A = A)x

with A = x"Ax/(x*x)
@ Preconditioning possible, but hard
@ | prefer to solve a shifted system inexactly:

(A—olhz=—(A-A)x
with o the ‘target’. The preconditioiner can be reused as long as o

is not changed.
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Locally Optimal Block Preconditioned Conjugate
Gradient (LOBPCG)

@ For symmetric Ax = A\Bx with positive definite B
@ the Rayleigh quotient
xTAx
xTBx
is maximum for the largest eigenvalue \n.x and minimum for the
smallest eigenvalue A,

@ LOBPCG is the conjugate gradient method applied to this
optimization problem
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Contour integral methods

@ Let ' C C be a closed contour in the
complex plane.

@ Define

Q:/zm—m4w€@”
r

@ The rank of Cy is the number of eigenvalues of A inside T'.
@ Eigenvalue problem:

Cix =X with Cpx =x

if A lies inside the contour.
@ Two Methods:

» Subspace iteration
» Arnoldi
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Contour integral methods
@ Basis operation: let V € C"™™,

CiV = /z"(z/ — A" 'Vdz
r

N
~ Y wzj(zl - AV
j=1

@ Solution of N linear systems. Can be done in parallel.
@ Subspace iteration.
» Compute Vy = CyV and orthonormalize (rank revealing QR or SVD)
» The rank of Vj is the number of eigenvalues in the contour
» Compute the eigenvalues of V;Cy V.
@ (Block) Arnoldi:
» Starting vector vq = Cyv and normalize
» Perform Arnoldi with C; with starting vector v;.
@ Expensive methods!
@ Contour integration leads to rational filter methods, which need

significantly less points (smaller N)
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